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Abstract

Transverse mode coupling (TMC) instability [1] is one of the major limitations of a single bunch current in large storage
rings. This paper is devoted to a theoretical analysis of the effect of transverse feedback systems on TMC thresholds. It
presents a space-time formalism-for a hollow beam model and time-independent collective interaction. Then, in the
framework of a simplified model, the principle of eliminating the TMC by means of a special transverse feedback system is
outlined. This approach is then generalized in the form of an algorithm.

PACS: 29.20; 29.27
Keywords: Transverse feedback system

1. Introduction

Starting from the space-time formulation of the TMC theory with averaged equations for the ‘‘hollow beam’’
model, the formalism is further developed for the practically important case of localized impedances.

An important reciprocal property of the eigenvalues for the TMC modes is proved for the general case.
Finally, a general algorithm for the elimination of the TMC effect by a special arrangement of a transverse
feedback system is developed. '

First experiments with a simplified variant of the proposed feedback [8] proved the possibility of using it for
an increasing TMCI threshold.

2. Averaged equations
Let us consider localized impedances and let us use the notation for the kick of the collective force:
dp = e’ (xW(As) + x'G(As)) , (1)

where e is the electron charge, x and x’ are the coordinate and angle of the leading forward pamcle and W and
G are functions of the distance between the forward and the test particle As.

This W-function notation differs by a factor (—1/c) from the usual notation [2]; however, it is more
convenient to use Eq. (1) for localized interaction of a bunch with elements of the vacuum chamber.

The second term gives the so-called ‘‘fast damping’’ with zero chromaticity. Its practical value is small in
comparison with the collective tune shift, so we neglect it everywhere in this paper.

The mean dipole moment of the particles of the bunch can be written in the form D = A\/B cos(¢ + w, 1),
where A and ¢ the ‘‘slow’’ amplitude and phase. Apart from the resonances and for small tune shifts (in
comparison with the betatron tune) we can use equations averaged in time:
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3/2

dAae” _dr =
e’ @B o —ionr 9T _ @
d'T l'y’nc 0 T

where the integration time T must be much larger than the betatron oscillation period.
In a localized force the dipole moment depends on the ‘‘fast’’ time; D = A\/E cos(w, T + ¥); besides, the
localized force itself depends on time (factor cé(z —z,)). Averaging of the time-dependent expression

A cos(w, T+ ¢) using T(w, dr = dz/B) yields:

1 (T o dT c

all _ fopr —° T .

: fo A cos(w, 7T+ )cdz —z,) € T~ 2pal, A exp(iy) , 3)
where T, is the revolution time. Hence Dcd(z — z,) in the force of the usual equations transforms into

(c/(21VBw, T,)A exp(iyh) .

Let us use for convenience the variable of the “‘slow’” dipole moment & = A ¢'/. Then, in every point, there
are two groups of particles for some synchrotron amplitude: one with negative and one with positive energy
offsets (synchrotron phase *¢,). The corresponding betatron phase and amplitudes have index + for the upper
particles and — for lower particles. The sum of the dipole moments & is

De)=ATe" +A" e =97 +9.
We can rewrite the total derivative in Eq. (2) through partial derivatives:

d2 09 (a@ a@‘)

ot T\ dp e

Here ¢ is the absolute value of the synchrotron phase; the minus sign arises from the different direction of
motion, or, in other words, from different signs of the derivatives of the synchrotron phase absolute value

=g,
Now the total averaged equations are:
9 9,58, Cw
& or Tag T .7 4)
and
B B e, .
dr o7 a) ’ o (3)

where 9 and 9 are the sum and the difference of the dipole moments for particles with sychrotron phase *¢..
F must be taken from Eq. (2). One can take & from the second equation and substitute it in the first:

,9°9 39 _2:"’__5__ ¢
W 3p®  or’ = ar (6)

For simplicity we treat only the case with zero chromaticity; however, it is easy to find the same equations
with nonzero chromaticity. One can find details in Ref. [3].

For example, let us solve the simple model for a ‘‘hollow’” beam (particles with the only synchrotron
amplitude) and for constant wake (W= const.). Let us find solutions which oscillate with frequency a. Let us
substitute D(p, £) = d(¢) e'* in the equations and, after cancellation of the exponent, we have (W = const.):

" ad aQ ¢ ’ ’
d'+—+— | dlg)de =0, @
W w, Jo

where Q = Ne’WpB(z,)/(2mymcT,).
After normalization of @ and Q on synchrotron frequency w,,
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d"+a’d' +aQd=0. ‘ (8)
For finding @ we have to define boundary conditions.
For bunch edges 9 =0|,_, . so d’' =0 =0~ The third condition is d” + a’d = 0| »=0» because of the zero
force at the head of the bunch.

So we can find solutions for €igenfrequencies in the following way: for fixed Q and e the solution for d(¢) is
the sum of three exponents d(¢) = C, e"'* + C, e + C, e***, where A; are the roots of the equation
XN +a’A+a0=0.
Three boundary conditions yield for C;:
C, A +Coh +CA =0,
Cih M+ e+ CA e =0, 9)
CiAT+a))+ A2+ a®) +Cy (A2 + a?) =0,

where « is the eigenfrequency.

The determinant of these equations is a function of «, so after putting it to zero we get the required equation
for d [6]. ,

In Fig. 1 there are some solutions of this system det M =0 versus O (the solutions were obtained with a
numerical solver of transcendent equations). .

One can see that, after merging of the eigenfrequencies of two modes, solutions with the same real tune and
with positive and negative imaginary parts of the tune appear. For this case the threshold of instability is

_ N WBGo)

= 20, mymeT, =0.362
and
0.362 X 2mww, ymcT,
“T WGy

2.1. Averaged equations for modes

Let us take the averaged equations for the ‘‘hollow’’ beam (4,5) for an arbitrary wake-function:

@_0_‘@._’_@ _2—1,:

dr — or 9 T

A2 9 09

— =17 =0. (10)

dr ~ a1 9 O

Here

0 1 2 3 4 5 6
Fig. 1. Eigenfrequencies & versus Q.
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A
2F = — Tf Wia cos ¢’ —acos $)P(¢') de’,
. 0

_ Ne’B(z,)

K= 2mymcT,

For zero current for harmonics with number n the solution is:

; 1
G =" 7 d,cosng,

_ U
P =—e"""=d sinngp,
2 GnSIRnE

where d, is an arbitrary constant.

Let us put in equations (10) the dipole moment in the form of an infinite sum of harmonics and with an
oscillatory dependence on time:

IO
@=e“"5 2 d, cosng,
— . i hd
9:&:""5 E d, sinng;

then let us multiply first by cos n¢, and second by sin n¢e and let us integrate them over ¢ from zero to . It
yields for d,:

iawd,+d_, inowd — d_, ™ _
) > I 5 = cos np2F d¢ ,
0]
iawd,—d_, inowd, +d_,
2 22 2

They hold for n =0 too.
One can take the sum and the difference of these equations and express the force in terms of d:

)

1
(@=nw)d,=-K— > K,d,, (11)
where
_ Ne’B(z,)
~ 2mwymcT,’

™ [4
K,. =f cos ng dgof W(As) cosn' ¢’ de’ .
0 0

Now let us obtain important properties for K,,,.:

Knn’ = (_1)n+n,Kn'n .
2.2. Chess board symmetry of the mode coupling matrix

Let us begin with the hollow beam model, then integration in K, is done over a triangle domain:
0=¢'=¢, 0= ¢ =, according to the causal nature of the wake function (for s >s', W(s —s") = 0):

w s
K,. =f cos m¢ d¢f cosm’'¢p'W(acos ¢ —acos ¢’)de’ .
0 0

Interchanging the order of integration:
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K

mm

. =f cosm' ¢’ d¢’f cos m¢pW(a cos ¢ —a cos ¢')dep
0 @’
and introducing new variables @ =7 — ¢, @' = — ¢":

g @’ .
K ,=f cos(m'w —m'®’) d(ﬁ’f cos(mm — m®)W(a cos(m — @) — a cos(m — D')) dP
0 0

mm

w -4
= (—1)"'*""kf cosm' P’ d(D’J cos m®PW(a cos @' —acos ®)dd=(-1)""K, . |
0 0 .

we come to a relation of ‘‘chess board symmetry’’ between the matrix elements:
K, =-D)""K_ .

Then we will use the equations for the *‘hollow’’ beam for a demonstration of the algorithm of elimination of
the threshold of the strong head-tail effect.

For a nonhollow beam we have to divide the synchrotron plane into rings and use equations for an infinite
number of rings and an infinite number of azimuthal modes for finding the eigen-frequencies. It was shown in
Ref. [7], that the ‘“‘chess board’’ property of coupling coefficients holds for coupling of rings with different
synchrotron amplitudes, so it is general. The antisymmetry of the odd—even terms is the mathematical reason of
merging of modes and TMC instability.

In the next section a more general approach is developed for exact (nonaveraged) equations.

3. General case

Let us start again with a hollow beam. The particles of a hollow beam occupy a ring in synchrotron phase
space. Let us divide this ring into 2k + 1 mesh elements with the nth one centred at the synchrotron phase ¢,:

_ 2mn s
b= 2k+1 2k +1

Each mesh element comprises a group of real particles which are at this moment in this position of the phase

space (and have a total dipole moment D, and angle D).
The division of the ring implies that all particles with the numbers n and 2k + 2 — n have equal synchrotron
coordinates and opposite synchrotron ‘‘velocities”” AE/E, with the exception of the last particle in the bunch;

this has no counterpart (see Fig. 2).

(I=n=2%k+1).

4

Fig. 2. Division of the longitudinal phase space into mesh elements for the hollow beam model.
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Let us assume that the synchrotron tune is 2/5, for example. Then we have a 5X 5 block matrix for 5
elements of the ring:

R

Il
SCowoo
Swooo
Woooco
Cooow
Coowo

where

B= cos u sin,u)
“\=sing cosu/’

and u is the betatron phase advance (we use normalized variables, so it has no g, etc.). The formula presented is
evident: for the element of the mesh with numbeér % for a 2/5 tune, the new dipole moment after a turn is just the
transformed dipole moment of the k — 2nd element.

The general matrix for arbitrary tunes is the so-called circulant matrix:

sin(2k + 1)g;
Y7 (2k+ 1) sin g,

with
1 L 2w
%=75 wST*(2k+l_l+j)m .

It has the same (as in the previous case) form for tunes k/N, where N is the number of mesh elements. For other
tunes it has small oscillations of different block’s contributions in the dipole moments of the elements, but as for
the eigenvectors and eigenfrequencies, they exactly correspond to first —m - - m harmonics (the total number is
2m +1). So it is the best solution for a finite number of divisions of the ‘‘hollow’’ beam to use the circulant
matrix among all others, because we take into account exactly all possible lower modes.

3.1. Localized kick from collective force

For a localized kick we have the change of the transverse momentum of the trailing particle Ap, =
2 e DW(s —s'), where the sum is taken over all forward particles of the bunch, instead of the same expression
for the collective force for a distributed impedance.

If there are several localized impedances placed over a machine circumference, one should construct a kick
matrix for each impedance and a transfer matrix for each azimuthal spacing so as to account for the mode phase
advance in between the kicks. Then sequential multiplication of these matrices will result in a single-turn matrix
which contains all the information on the stability of the 2k + 1 modes in question, neglecting their coupling
with the truncated higher modes. From experience with the numerical computation, a good approximation for
the eigenvalues is available with only few lower modes.

32. T Wo—a’imensional mesh

For a nonhollow beam one can divide the synchrotron phase space into rings and transform the dipole
moments and angles of all rings as done earlier for one ring of a “‘hollow”” beam and with accurate account of
the kick of the collective force. Eigenvalues of the obtained matrix are what we need for our problem. It was
shown in Ref. [7], that it is possible to prove for the system obtained, that the general matrix for zero
chromaticity is symplectic after some changing of variables, and reciprocal properties for the eigenvalues hold

for the system obtained.
It was also shown there that it is possible to use this technique for a nonlinear potential well, etc. So now we
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have all mathematical tools for taking into account linear feedback of any kind, and for an explanation of the

general principles of elimination of the TMCI threshold.
All following calculations are made with a code, based on the presented technique.

4. General principle of elimination of TMC instability

Feedback systems give the most universal cure for collective instabilities. Usually they treat multi-bunch

_ and/or multi-turn instabilities where short bunches are considered as rigid and internal motion is disregarded. A

feedback system, which cannot resolve the intra-bunch structure due to-its limited bandwidth and acts equally on
all particles in a short bunch, is apparently capable of ‘curing the. rigid bunch effects.

The TMC instability is of quite another nature; its essential feature is the ultra-relativistic ‘‘causality’” of the
interaction in the bunch: its leading particles are free from interaction with the collective field, while the trailing
particles are affected by the intensity-dependent force. Compensation of such collective forces by means of a
feedback system seems to be a complicated problem and is not feasible for very short bunches.

In what follows the feedback system will act equally on all the particles in the bunch, so that it couples only
with the harmonic m = 0, since all other harmonics in the basic set have zero dipole moment. Further we take
into account feedback action in the following way: for the averaged equation a one turn feedback affects the real
and the imaginary part in the zero harmonic tune, and no action on other harmonics. Due to coupling with zero
harmonic they also interact with the feedback. It gives already some advantages of usual feedback. This was
investigated in first works on TMCI with feedback [4,5]. We use oscillators (or oscillatory wake function
feedback), which are also coupled with zero harmonic. It is evident how to take into account feedback action in
real (localized on azimuth) form: in the pickup point we add the signal proportional to the dipole moment to the
feedback; in the kicker point we transform the feedback signal from all the previous turns with the feedback
wake-function and give a kick proportional to the obtained signal, equal for all particles.

Let us take two oscillators (modes) with antisymmetric linear coupling:

U'=P,
P+ wlU=—kV
v p (12)
P+ @ V=1kU .

Here U, P, and V, P, stand for the canonically conjugate variables in any two coupled head—tail modes and k is
the relevant matrix element of the mode interaction matrix Kmm , responsible for coupling these two modes (and

proportional to the beam 1ntens1ty)
The eigenfrequencies can be easﬂy obtained:

2 2 2 2,2 2
, w,to,*\(w, —w,) —4k
2 ’

and the threshold at k =1 (w? — w?) is evident.
Disregarding the details of the transverse feedback system design and operation, we note that in principle its

response function (we mean the transfer function between the pick-up signal and the kicker action) can have a
rather general form. Here the feedback representation with an oscillator (or an LC-circuit) coupled to the m =0
mode, called U, will suffice. We take the feedback oscillator’s coupling with the m = 0 mode equal to k, but put
it symmetrically into the set of equations, i.e., in a Hamiltonian manner. The feedback frequency is set equal to
that. of the mode V (say, with m = —1). According to what is stated above, the feedback oscillator Z is not

coupled to the mode V. Then we have: -

II. COHERENT OSCILLATIONS
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U'=p,
P+ w’U=—kV+kZ,

V=P, (13)
P+ &’V=kU,

Z'=P,,

P+ 02Z=kU.

These equations correspond to the ones with small synchrotron and betatron phase advances over one revolution
(equations from the previous section, but besides using a complex form for simplicity).

Simple calculations of the eigenvalues show that here the mode frequencies stay equal to their unperturbed
values independently of k& and hence do not depend on the beam current! Mode coupling is not totally
eliminated: it is inherent in the current dependence of the eigenvectors. However, the mode frequencies can be
made current-independent, hence they always remain real, which means elimination of the TMC instability.

For a multi-mode system (no matter how many modes coupled with the m = 0 mode there are) the principle
shown in this example also works, with the exception of some degenerate cases.

The above consideration concerned the hollow beam. General cases have to be treated with much more
complicated techniques and require a more general formalism, based on constructions of the previous section, to
be presented in the following sections. Finally we will see that the idea of current-independent eigenfrequencies,
achieved with a special transverse feedback system, can be extended to the general case.

5. General technique for elimination of current dependence of the TMC mode frequencies

In the previous section the possibility to obtain current-independent frequencies of the synchrobetatron modes
by means of transverse feedback has been demonstrated on the basis of a simple model: only two modes and
one feedback oscillator were considered with distributed interaction. Here we firstly present an algorithm for an
arbitrary number of modes with the same interaction, then we will generalize the technique in order to account

for localized collective force (and feedback) action.

5.1. Algorithm for averaged equations

Let us take averaged equations (11) and add to these equations for oscillators and one-turn feedback, which

gives a real and an imaginary shift of the zero harmonic tune. v _
Let us use z, for oscillator variables with frequencies w, and coupling coefficients with zero harmonic g,, g, !
Let us show that N oscillators will suffice for changing frequencies of N higher modes and the zero mode, and
make arbitrary values of all the 2N + 1 frequencies. Our equation for zero harmonic is:

N N
X,=iAX,—i> K, X, +i2, g2, (14)
i=0

=1

where A is the one-turn feedback coefficient. > Equations for oscillators are:

7; —iwz, =ig,X,,
(15)

2y~ loyzy = igyX, .

"In the algorithm for eigenvalues calculation q,, g, are always multiplied, so they give only one coefficient.
2 Prime means time derivative and summation begins from zero, because it does not matter here; this equation, after the substitution
X,xd, e, becomes the same as Eq. (11) for the zeroth mode, but here and below the coefficient K/ is included to K, for simplicity.
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For finding eigenfrequencies w put

AXI- — Ai eiwt ,
7= Zx eiwt
and we obtain for zero harmonic:
N N
Ag(@ — A+ Ky)=— 2 KoA, + 2 g7,
i=1 =1
and for oscillators:
Z\(0 ~w)=q,A,,
Zy(w —wy) =qyA, .
From here we can express Z, and put them in equations for the zero mode:
N - N
A0<w —A+ Ky -2, _g_@__) =— D KA, .
=1 @G i=1
New frequencies can be found from the following equation:
V—w+tKy Ko Koy

- K
detB = 1o =0,
© M — wE
Ko
where
N _
949

W’:—A—i—z_—’

=1 W~ @

and M is the coupling matrix of the zero harmonic with higher ones.
The form of ¥ with a common denominator is:

F(w)
N )
11;11 (Z)z - )

where F(w) is a polynomial of Nth order.

V=—A+

The total determinant can be expressed through the first row (M; are minors of elements K;):

N
(W — 0+ Kyy)|M — wE| — >, K, M(w).

i=1

The collected form is:

N
Hw)/ 1@ -w)

where H is a polynomial of 2N + 1st order.
In order to obtain 2N + 1 needed roots (2, H must have the form:

2N+1

H(w) = T[ @2 - w)

and the corresponding equation is

85

(16)

a7

(18)

(19)

II. COHERENT OSCILLATIONS




VV. Danilov, E.A. Perevedentsev | Nucl. Instr. and Meth. in Phys. Res. A 391 (1997) 77-92

86
al H(w)
V-ow+ Koo)[M - wEI + 2 KuM(w) =% s
=t I=I_I1 (0, — w)
or
H(w) -
(¥ — 0 + KoM — 0E| =5 -2 KoM(@),
[[@-w
=1
and, finally

N

N
H(w) — (Z Ko,-M,.(w)> : I] (@, — w)

i=1

(W —w+Ky)= ~
lM—wEilUl(al_w)

of the R.H.S. can be divided by an Nth

From the form of ¥ we see that the last equation holds if the nominator
are also roots of the nominator. Hence

order polynomial |M — wE|. Let x, be all roots of this polynomial. So x,

we have N equations for Nw,.
From the R.H.S. of the previous equation we have a symmetrical polynomial of w:

: Hx,)
— 3
H (xk —w[‘) =N )
=1
E Ko:M(x,)
i=1
where k=1, ..., N; we can decompose it:
N
— N N-1 N
IUI x—@)=x, —ox, o+t (1) oy.
Here a,, 0, . . ., Oy are basic symmetrical functions of w;:

o, =0+ toy,

o, =ww,t Tty Wy,

oy =w, X Xy .

When all N roots x, are different, we obtain N linear equations for oy, 0, ..., Oy- According to general

algebraic laws ,, . .., wy can be found as roots of an algebraic equation of Nth order:

M=o+ (D)o =0.
So, N unknown parameters among 2N + 1 can be found separately.

Let us take the beginning form of ¥

N

v=—a4-2,

=1

a4
o -’

Last N+ 1 unknown coefficients y, = gg, and the one turn parameter A can be found from N + 1 linear
equations, which appears when we substitute N + 1 needed  in Eq. (19).

It is important to note that all the variab
damping.

les and parameters are complex, so all the frequencies may have




@
v

VV. Danilov, E.A. Perevedentsév / Nucl. Instr. and Meth. in Phys. Res. A 391 (1997) 77-92 87

5.1.1. Example
Let us demonstrate the algorithm for two modes. Here 4 is a one turn feedback parameter, w, is an unknown
oscillator frequency, and the coupling coefficient is y, = g,g,. The characteristic equation reads:
—A—a)+Koo—% K,
@ —w, =0. (20)
K o, —o+K,

For simplicity here K,,=K,;, =0 and K,, = —K,, = ¢; let us assign three values to the new frequencies
0, w;, w;. We have:

——A—w—il—— q —a)(wl—a))2
@ —w; ==
-q w0~ w “e

(2D

B

or

_ 2
<—A~w——y‘l-:‘>(a)l ~a))+q2=M. (22)

w —w, W, —
According to the algorithm, the polynomial
(@ — @), — ) — (@, — w)

must be divisible by w, — w; hence w, is a root of the numerator and w, = w,. So for this example the oscillator

frequency is equal to the frequency of the 1st harmonic.
After the substitution w = w, and w = w, in the first equation we have two equations for coefficients:

_A(wl_wo)"YI+q2=0,
-n+q*=0.

From them we obtain 4=0 and y, = ¢%; this solution corresponds to the example which we used for the
explanation of the main principle of eliminating the TMCI.

5.2. Algorithm for localized impedances and feedback

We can slightly transform the algorithm for a more realistic situation of localized impedances and feedback
pickup and kicker. '

Let us use the notation A = [a, for the matrix for N + 1 modes; its order is 2(N + 1) and the first two rows
and columns correspond to a transformation of zero harmonic X,. In Fig. 3 there are eigenmodes without
feedback (the three modes model is used for calculations and W= const). '

Then y,,..., yy are coupling coefficients of zero harmonic and oscillators and 4,, 4, are coefficients of
one-turn feedback.

Let us use p, r, s, ¢ as coefficients of free transformation of feedback oscillators. The total matrix of 2(2N + 1)
order for N + 1 harmonics and N oscillators is

fa“ a, "0 ot 0o --- A
Az 4y 0
as; Qs 0
Ay Ay O_
—_— . 0
A=1 o p, 5, 0 O ’ (23)
0 rr ¢¢ 0 0
0 0 0 p, s,
0 0 0 r, c
\ c )
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+1 |

L " L " "

0 2.0 Q

Fig. 3. Eigenfrequencies {2 versus Q « /. Parameter Q is normalized in such a way that for Q = 1 zeroth harmonic shift is equal to w,.

it must be multiplied by feedback matrix’

( 4 000 --- 0 0 00O A
4 1 0 0 1 1 0
0O 01 0 o --
0O 0 0 1 0
] e 0
FB=119 o 1 0 00 - 24)
y, O 0O 1 00 .
0 0 0O 0 1 0
y, 0O 0O 0 01
C- - o)
and for B =A-FB:
(Aa,, +4a, a, -+ -+ a, 0 a, 0 - a
Aiay + 48y, a,y ay, 0 a, O
Aay + 4,0y, a;, Az,
dia, +4da, ay, Qg
P S S (25)
i€, 0 rr ¢, 0 O
Y2S2 0 0 0 p s
¥,C, 0 0 0 r, c
L - .

Let us choose variables 4,, 4,, y;s;, y,c;, p;, ¢;- We can find them from 2(2N + 1) equations

* In this matrix the element 1, 1 corresponds to coordinate changing in point; it is the result of transforming feedback action from a point
of the kicker to a point of the pickup.
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r Re Q 1
+1 |
0
- -1 -
I Im Q ]
0 —
0 2.0 [}

Fig. 4. Compensation of tune shift of mode with m = 0 by a one-turn feedback.

|B—Adl=0,

where A, are prescribed frequencies.

Coefficients 4,, 4,, y,s,, y,c, are present linearly in the equations, and we can find them from the equations
and substitute them in a previous set for simplification of the algorithm. Coefficients p,, c; can be found earlier
from algebraic equations (equations for them are again symmetric).

One can see the results of applying the algorithm for a 3-mode model. Fig. 4 shows frequencies of 3 modes
with optimal one turn feedback without oscillators. Fig. 5 corresponds to a total elimination of the threshold by
adding two additional oscillators with frequencies of =1 modes.

T
r Re Q 1
+1
0
- -1 B
i Im Q ]
0
0 2.0 Q

Fig. 5. Elimination of current dependence of mode frequencies.

II. COHERENT OSCILLATIONS




|
§
.
|

i

B

90 VV. Danilov, E.A. Perevedentsev | Nucl. Instr. and Meth. in Phys. Res. A 391 (1997) 77-92

5.3. Extension of the algorithm to radial modes

An important feature of the hollow beam model is that it contains only one unperturbed mode m = 0 with
nonzero dipole moment, it has been essential for the evaluation of the determinant and eigenvalues in the above
which circumvents straightforward solving the high-order nonlinear set of equations.

Given a general distribution over the synchrotron amplitudes, an infinite number of unperturbed radial modes
with nonzero dipole moment appears. According to the numerical procedure, the bunch is now divided into
several rings, each specified by a certain value of the amplitude variable (i.e. the synchrotron amplitude of the
ring) a. Hence, we obtain as many unperturbed modes with m =0 as the amount of divisional rings we

introduced.

However, we can
moment, and the complementary combinations, having zero total dipole moments.

from linear algebra: a linear space can be split into a direct sum of two subspaces:
i) a one-dimensional line av with arbitrary ¢ and v =(1,..., 1);
ii) a hyperplane, spanned by all the vectors x=(...,x,,...), which are orthogonal to v, so that x-v)y=

0=2x,=0.
If x, here denote the dipole moments of the rings, then all the combinations but one (namely, vector v) have zero

total dipole moment.
Such a change of the basic set (now consisting of the linear combinations, which themselves are not

eigenvectors of the system) recovers the former situation, and the previous algorithm for the hollow beam is
again valid, the role of the single mode carrying the dipole moment and, therefore, coupled to the feedback
system, is taken over by the ““total dipole’” combination.

algorithm,

always form a single linear combination of these modes to have a nonzero total dipole
The substantiation comes

5.4. General linear feedback

In principle, we can construct an algorithm for arbitrary linear feedback. The behavior of the system
““bunch + linear arbitrary feedback’’ is always determined by eigenvalues, but in the general case we have to
use a matrix for transformation variables, consisting not only of Va;‘iables' in the present time, but also variables
from the previous turns. T T A

We only take a simple example of such a feedback. Let us imagine that we have N significant modes and that
from previous turns we can calculate variables of these modes. We have the transformation matrix for N modes

A: the total matrix can be obtained after multiplication by the kicker matrix:

Al Az A2N
=010,
0 0 -+ 1/

which means changing of the angle of the zero harmonic proportionally to variables of the higher harmonics; 4;
are unknown coefficients. For them we have 2N linear equations from conditions,

|[KA — LE|=0,
where A, (i =2N) are prescribed eigenfrequencies. So after solving the linear equations we obtain the unknown
coefficients. Preceding calculations of modes variables can be made with a processor using data from previous

turns, etc.
No doubt, that we can make the same algorithms for arbitrary linear feedbacks; the only problem arises from

difficulties with finding coefficients and constructing complicated multiturn feedbacks.

6. Practical use of the algorithm

Here we give a few cases where the algorithm must be reconstructed.
Multiple roots can occur at the stage when we find the feedback oscillator frequencies from a high-order
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polynomial equation; these seriously complicate all the treatment. We can either avoid the multiplicity by tuning
the assigned frequencies, or we must deal with the enlarged set of equations, including equations for zero
derivative(s) of the polynomials at the multiple roots.’

Vanishing coupling of certain modes to the zeroth mode will apparently exclude them from a set of modes
curable by feedback, because the only means to affect them with a feedback, which does not resolve intra-bunch
motion, was to use the mode m =0 as a mediator of the interaction. This problem has no solution at all.

An idealistic single-turn feedback whose action was implemented in the algorithm as a point-wise interaction
with the single (thin lens) unknown parameter 4, in addition to the 2N oscillator parameters. In large machines
with a substantial collective phase advance between the single-turn feedback pickup and kicker, direct
representation of a real feedback with such a model is no more possible. To compensate for the m =0 mode
tune slope we can use one more feedback oscillator. A first experiment with one oscillator instead of a one-turn
feedback was made in LEP; see details in Ref. [8].

Damping of the feedback oscillators is needed to make the system more stable. However, for large damping
previous turns are forgotten by the oscillator, so we always have to find the optimum, which depends on the
machine parameters.

Noise is one of the restrictions of using multiturn feedbacks, because it leads to elimination of correlations of
pickup signals with dipole moment after many turns.

7. Conclusion

In conclusion, we have to say that the algorithms are checked in simulations and partly (with one oscillator) in
practice on LEP. The main result is that we can increase the TMCI threshold by means of a linear feedback of a
special type, but algorithms must be chosen or upgraded according to real machine parameters.
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